

Instructor’s Guide for

 Coulouris, Dollimore and Kindberg

Distributed Systems: Concepts and Design

 Edn. 3 ©Pearson Education 2001 1

Figure 12.1 Operations of the Account interface

deposit(amount)
deposit amount in the account

withdraw(amount)
withdraw amount from the account

getBalance()→ amount
return the balance of the account

setBalance(amount)
set the balance of the account to amount

Operations of the Branch interface

create(name)→ account
create a new account with a given name

lookUp(name)→ account
return a reference to the account with the given name

 branchTotal()→ amount
return the total of all the balances at the branch

Instructor’s Guide for

 Coulouris, Dollimore and Kindberg

Distributed Systems: Concepts and Design

 Edn. 3 ©Pearson Education 2001 2

Figure 12.2 A client’s banking transaction

Transaction T:
a.withdraw(100);
b.deposit(100);
c.withdraw(200);
b.deposit(200);

Instructor’s Guide for

 Coulouris, Dollimore and Kindberg

Distributed Systems: Concepts and Design

 Edn. 3 ©Pearson Education 2001 3

Figure 12.3 Operations in Coordinator interface

openTransaction() → trans;
starts a new transaction and delivers a unique TID trans. This identifier will be used
in the other operations in the transaction.

closeTransaction(trans)→ (commit, abort);
ends a transaction: a commit return value indicates that the transaction has
committed; an abort return value indicates that it has aborted.

abortTransaction(trans);
aborts the transaction.

Instructor’s Guide for

 Coulouris, Dollimore and Kindberg

Distributed Systems: Concepts and Design

 Edn. 3 ©Pearson Education 2001 4

Figure 12.4 Transaction life histories

Successful Aborted by client Aborted by server

openTransaction openTransaction openTransaction

operation operation operation

operation operation operation

• • server aborts •

• • transaction → •

operation operation operation ERROR

reported to client

closeTransaction abortTransaction

Instructor’s Guide for

 Coulouris, Dollimore and Kindberg

Distributed Systems: Concepts and Design

 Edn. 3 ©Pearson Education 2001 5

Figure 12.5 The lost update problem

Transaction T:

balance = b.getBalance();

b.setBalance(balance*1.1);

a.withdraw(balance/10)

Transaction U:
balance = b.getBalance();

b.setBalance(balance*1.1);

c.withdraw(balance/10)

balance = b.getBalance(); $200

balance = b.getBalance(); $200

b.setBalance(balance*1.1); $220

b.setBalance(balance*1.1); $220

a.withdraw(balance/10) $80

c.withdraw(balance/10) $280

Instructor’s Guide for

 Coulouris, Dollimore and Kindberg

Distributed Systems: Concepts and Design

 Edn. 3 ©Pearson Education 2001 6

Figure 12.6 The inconsistent retrievals problem

Transaction V:

a.withdraw(100)

b.deposit(100)

Transaction W:

aBranch.branchTotal()

a.withdraw(100); $100

total = a.getBalance() $100

total = total + b.getBalance() $300

total = total + c.getBalance()

b.deposit(100) $300 •

•

Instructor’s Guide for

 Coulouris, Dollimore and Kindberg

Distributed Systems: Concepts and Design

 Edn. 3 ©Pearson Education 2001 7

Figure 12.7 A serially equivalent interleaving of T and U

Transaction T:

balance = b.getBalance()

b.setBalance(balance*1.1)

a.withdraw(balance/10)

Transaction U:

balance = b.getBalance()

b.setBalance(balance*1.1)

c.withdraw(balance/10)

balance = b.getBalance() $200

b.setBalance(balance*1.1) $220

balance = b.getBalance() $220

b.setBalance(balance*1.1) $242

a.withdraw(balance/10) $80

c.withdraw(balance/10) $278

Instructor’s Guide for

 Coulouris, Dollimore and Kindberg

Distributed Systems: Concepts and Design

 Edn. 3 ©Pearson Education 2001 8

Figure 12.8 A serially equivalent interleaving of V and W

Transaction V:

a.withdraw(100);

b.deposit(100)

Transaction W:

aBranch.branchTotal()

a.withdraw(100); $100

b.deposit(100) $300

total = a.getBalance() $100

total = total + b.getBalance() $400

total = total + c.getBalance()

...

Instructor’s Guide for

 Coulouris, Dollimore and Kindberg

Distributed Systems: Concepts and Design

 Edn. 3 ©Pearson Education 2001 9

Figure 12.9 Read and write operation conflict rules

Operations of different
transactions

Conflict Reason

read read No
Because the effect of a pair of read operations does
not depend on the order in which they are executed

read write Yes
Because the effect of a read and a write operation
depends on the order of their execution

write write Yes
Because the effect of a pair of write operations
depends on the order of their execution

Instructor’s Guide for

 Coulouris, Dollimore and Kindberg

Distributed Systems: Concepts and Design

 Edn. 3 ©Pearson Education 2001 10

Figure 12.10 A non-serially equivalent interleaving of operations of transactions T and U

Transaction T: Transaction U:
x = read(i)

write(i, 10)

y = read(j)

write(j, 30)

write(j, 20)

z = read (i)

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 3 ©Pearson Education 2001 11

Figure 12.11 A dirty read when transaction T aborts

Transaction T:

a.getBalance()

a.setBalance(balance + 10)

Transaction U:

a.getBalance()

a.setBalance(balance + 20)

balance = a.getBalance() $100

a.setBalance(balance + 10) $110

balance = a.getBalance() $110

a.setBalance(balance + 20) $130

commit transaction

abort transaction

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 3 ©Pearson Education 2001 12

Figure 12.12 Overwriting uncommitted values

Transaction T:

a.setBalance(105)

Transaction U:

a.setBalance(110)

$100

a.setBalance(105) $105

a.setBalance(110) $110

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 3 ©Pearson Education 2001 13

Figure 12.13 Nested transactions

T : top-level transaction

T1 = openSubTransaction T2 = openSubTransaction

openSubTransaction openSubTransactionopenSubTransaction

openSubTransaction

T1 : T2 :

T11 : T12 :

T211 :

T21 :

prov.commit

prov. commit

abort

prov. commitprov. commit

prov. commit

commit

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 3 ©Pearson Education 2001 14

Figure 12.14 Transactions T and U with exclusive locks

Transaction T:

balance = b.getBalance()

b.setBalance(bal*1.1)

a.withdraw(bal/10)

Transaction U:

balance = b.getBalance()

b.setBalance(bal*1.1)

c.withdraw(bal/10)
Operations Locks Operations Locks
openTransaction

bal = b.getBalance() lock B

b.setBalance(bal*1.1) openTransaction

a.withdraw(bal/10) lock A bal = b.getBalance() waits for T’s
lock on B

closeTransaction unlock A, B • • •

lock B

b.setBalance(bal*1.1)

 c.withdraw(bal/10) lock C

closeTransaction unlock B, C

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 3 ©Pearson Education 2001 15

Figure 12.15 Lock compatibility

For one object Lock requested

read write

Lock already set none OK OK

 read OK wait

write wait wait

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 3 ©Pearson Education 2001 16

Figure 12.16 Use of locks in strict two-phase locking

1. When an operation accesses an object within a transaction:

(a)If the object is not already locked, it is locked and the operation proceeds.

(b)If the object has a conflicting lock set by another transaction, the transaction
must wait until it is unlocked.

(c)If the object has a non-conflicting lock set by another transaction, the lock is
shared and the operation proceeds.

(d)If the object has already been locked in the same transaction, the lock will be
promoted if necessary and the operation proceeds. (Where promotion is
prevented by a conflicting lock, rule (b) is used.)

2. When a transaction is committed or aborted, the server unlocks all objects it
locked for the transaction.

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 3 ©Pearson Education 2001 17

Figure 12.17 Lock class

public class Lock {
private Object object; // the object being protected by the lock
private Vector holders; // the TIDs of current holders
private LockType lockType; // the current type

public synchronized void acquire(TransID trans, LockType aLockType){
while(/*another transaction holds the lock in conflicing mode*/) {

try {
wait();

}catch (InterruptedException e){/*...*/ }
 }
 if(holders.isEmpty()) { // no TIDs hold lock
 holders.addElement(trans);

lockType = aLockType;
 } else if(/*another transaction holds the lock, share it*/)){
 if(/* this transaction not a holder*/) holders.addElement(trans);

} else if (/* this transaction is a holder but needs a more exclusive lock*/)
 lockType.promote();
 }

}
// this figure continues on the next slide

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 3 ©Pearson Education 2001 18

Figure 12.17 continued
public synchronized void release(TransID trans){

holders.removeElement(trans); // remove this holder
// set locktype to none
notifyAll();

}
}

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 3 ©Pearson Education 2001 19

igure 12.18 LockManager class

public class LockManager {
 private Hashtable theLocks;

 public void setLock(Object object, TransID trans, LockType lockType){
 Lock foundLock;
 synchronized(this){

// find the lock associated with object
 // if there isn’t one, create it and add to the hashtable
 }
 foundLock.acquire(trans, lockType);
 }

 // synchronize this one because we want to remove all entries
 public synchronized void unLock(TransID trans) {
 Enumeration e = theLocks.elements();
 while(e.hasMoreElements()){
 Lock aLock = (Lock)(e.nextElement());
 if(/* trans is a holder of this lock*/) aLock.release(trans);
 }
 }
}

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 3 ©Pearson Education 2001 20

Figure 12.19 Deadlock with write locks

Transaction T Transaction U
Operations Locks Operations Locks
a.deposit(100); write lock A

b.deposit(200) write lock B

b.withdraw(100)

••• waits for U’s a.withdraw(200); waits for T’s

lock on B ••• lock on A

••• •••

••• •••

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 3 ©Pearson Education 2001 21

Figure 12.20 The wait-for graph for Figure 12.19

B

A

Waits for

Held by

Held by

T UU T

Waits for

Figure 12.21 A cycle in a wait-for graph

U

V

T

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 3 ©Pearson Education 2001 22

C

T

U
V

Held by

Held by

Held by

T
U

V

W

W

B

Held by

Waits for

Figure 12.22 Another wait-for graph

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 3 ©Pearson Education 2001 23

Figure 12.23 Resolution of the deadlock in Figure 12.19

Transaction T Transaction U

Operations Locks Operations Locks

a.deposit(100); write lock A

b.deposit(200) write lock B

b.withdraw(100)

••• waits for U’s a.withdraw(200); waits for T’s

lock on B ••• lock on A

 (timeout elapses)
 T’s lock on A becomes vulnerable,
 unlock A, abort T

•••

a.withdraw(200); write locks A

unlock A, B

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 3 ©Pearson Education 2001 24

Figure 12.24 Lock compatibility (read, write and commit locks)

For one object Lock to be set

read write commit

Lock already set none OK OK OK

read OK OK wait

write OK wait –

commit wait wait –

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 3 ©Pearson Education 2001 25

Branch

AccountA B C

Figure 12.25 Lock hierarchy for the banking example

Figure 12.26 Lock hierarchy for a diary

Week

Monday Tuesday Wednesday Thursday Friday

9:00–10:00

time slots

10:00–11:00 11:00–12:00 12:00–13:00 13:00–14:00 14:00–15:00 15:00–16:00

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 3 ©Pearson Education 2001 26

Figure 12.27 Lock compatibility table for hierarchic locks

For one object Lock to be set

read write I-read I-write

Lock already set none OK OK OK OK

read OK wait OK wait

write wait wait wait wait

I-read OK wait OK OK

I-write wait wait OK OK

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 3 ©Pearson Education 2001 27

Serializability of transaction T with respect to transaction Ti

Tv Ti Rule

write read 1. Ti must not read objects written by Tv.

read write 2. Tv must not read objects written by Ti.

write write 3. Ti must not write objects written by Tv and
Tv must not write objects written by Ti.

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 3 ©Pearson Education 2001 28

Figure 12.28 Validation of transactions

Earlier committed
transactions

Working Validation Update

T1

Tv
Transaction
being validated

T2

T3

Later active
transactions

active1

active2

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 3 ©Pearson Education 2001 29

Backward validation of transaction Tv

boolean valid = true;
for (int Ti = startTn+1; Ti <= finishTn; Ti++){

if (read set of Tv intersects write set of Ti) valid = false;
}

Forward validation of transaction Tv

boolean valid = true;
for (int Tid = active1; Tid <= activeN; Tid++){

if (write set of Tv intersects read set of Tid) valid = false;
}

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 3 ©Pearson Education 2001 30

Figure 12.29 Operation conflicts for timestamp ordering

Rule Tc Ti

1. write read Tc must not write an object that has been read by any Ti where Ti > Tc
this requires that Tc ≥ the maximum read timestamp of the object.

2. write write Tc must not write an object that has been written by any Ti where Ti >Tc
this requires that Tc > write timestamp of the committed object.

3. read write Tc must not read an object that has been written by any Ti where Ti > Tc
this requires that Tc > write timestamp of the committed object.

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 3 ©Pearson Education 2001 31

Figure 12.30 Write operations and timestamps

(a) T3 write (b) T3 write

 object produced by
 transaction Ti
 (with write timestamp Ti)

T1 < T2 < T3 < T4

(c) T3 write (d) T3 write

Time

Before

After

T2

T2 T3

Time

Before

After

T2

T2 T3

T1

T1

Tentative

Committed

Ti

Ti

Key:

Time

Before

After

T1

T1

T4

T3 T4

Time

Transaction
abortsBefore

After

T4

T4

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 3 ©Pearson Education 2001 32

Timestamp ordering write rule
if (Tc ≥ maximum read timestamp on D &&

Tc > write timestamp on committed version of D)
perform write operation on tentative version of D with write timestamp Tc

else /* write is too late */
Abort transaction Tc

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 3 ©Pearson Education 2001 33

Figure 12.31 Read operations and timestamps

(a) T3 read (b) T3 read

(c) T3 read (d) T3 read

object produced by transaction Ti
 (with write timestamp Ti)
 T1 < T2 < T3 < T4

Time

read
proceeds

Selected

T2

Time

read
proceeds

Selected

T2 T4

Time

read waits

Selected

T1 T2

Time

Transaction
abortsT4

Key:

TentativeCommitted

Ti Ti

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 3 ©Pearson Education 2001 34

Timestamp ordering read rule
if (Tc > write timestamp on committed version of D) {

let Dselected be the version of D with the maximum write timestamp ≤ Tc
if (Dselected is committed)

perform read operation on the version Dselected
else

Wait until the transaction that made version Dselected commits or aborts
then reapply the read rule

} else
Abort transaction Tc

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 3 ©Pearson Education 2001 35

Figure 12.32 Timestamps in transactions T and U

Timestamps and versions of objects

 T U A B C

 RTS WTS RTS WTS RTS WTS

{} S {} S {} S

openTransaction

bal = b.getBalance() {T}

openTransaction

b.setBalance(bal*1.1) S, T
bal = b.getBalance()

wait for T

 a.withdraw(bal/10) ••• S, T
commit ••• T T

bal = b.getBalance() {U}

b.setBalance(bal*1.1) T, U
c.withdraw(bal/10) S, U

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 3 ©Pearson Education 2001 36

Figure 12.33 Late write operation would invalidate a read

object produced by transaction
Ti (with write timestamp Ti and
read timestamp Tk)

Time

T4 write;T5 read;T3 write;T3 read;

T2
T3 T5

T1
T3

T1 < T2 < T3 < T4 < T5

Key:

TentativeCommitted

Ti Ti
Tk Tk

