
Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 3 ©Pearson Education 2001 1

Figure 13.1 Distributed transactions

(a) Flat transaction (b) Nested transactions

Client

X

Y

Z

T

X

Y

M

NT1

T
2

T
11

Client

P

T
T

12

T
21

T
22

T

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 3 ©Pearson Education 2001 2

Figure 13.2 Nested banking transaction

a.withdraw(10)

c.deposit(10)

b.withdraw(20)

d.deposit(20)

Client A

B

C

T = openTransaction
 openSubTransaction

a.withdraw(10);

 closeTransaction

 openSubTransaction
b.withdraw(20);

 openSubTransaction
c.deposit(10);

 openSubTransaction
d.deposit(20);

T1

T
2

T
3

T
4

T

D

X

Y

Z

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 3 ©Pearson Education 2001 3

Figure 13.3 A distributed banking transaction

..

BranchZ

BranchX

T = openTransaction
 a.withdraw(4);
 c.deposit(4);
 b.withdraw(3);
 d.deposit(3);

 closeTransaction

participant

participant

C

D

Client

BranchY

B

A

coordinator

participant join

 join

 join

T

 a.withdraw(4);

 c.deposit(4);

 b.withdraw(3);

 d.deposit(3);

openTransaction
 closeTransaction

 b.withdraw(T, 3);

 Note: the coordinator is in one of the servers, e.g. BranchX

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 3 ©Pearson Education 2001 4

Figure 13.4 Operations for two-phase commit protocol

canCommit?(trans)→ Yes / No
Call from coordinator to participant to ask whether it can commit a transaction.
Participant replies with its vote.

doCommit(trans)
Call from coordinator to participant to tell participant to commit its part of a
transaction.

doAbort(trans)
Call from coordinator to participant to tell participant to abort its part of a transaction.

haveCommitted(trans, participant)
Call from participant to coordinator to confirm that it has committed the transaction.

getDecision(trans) → Yes / No
Call from participant to coordinator to ask for the decision on a transaction after it
has voted Yes but has still had no reply after some delay. Used to recover from server
crash or delayed messages.

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 3 ©Pearson Education 2001 5

Figure 13.5 The two-phase commit protocol

Phase 1 (voting phase):

1. The coordinator sends a canCommit? request to each of the participants in the
transaction.

2. When a participant receives a canCommit? request it replies with its vote (Yes or
No) to the coordinator. Before voting Yes, it prepares to commit by saving objects
in permanent storage. If the vote is No the participant aborts immediately.

Phase 2 (completion according to outcome of vote):

3. The coordinator collects the votes (including its own).

(a)If there are no failures and all the votes are Yes the coordinator decides to
commit the transaction and sends a doCommit request to each of the
participants.

(b)Otherwise the coordinator decides to abort the transaction and sends doAbort
requests to all participants that voted Yes.

4. Participants that voted Yes are waiting for a doCommit or doAbort request from
the coordinator. When a participant receives one of these messages it acts
accordingly and in the case of commit, makes a haveCommitted call as
confirmation to the coordinator.

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 3 ©Pearson Education 2001 6

Figure 13.6 Communication in two-phase commit protocol

canCommit?
Yes

doCommit

haveCommitted

Coordinator

1

3

(waiting for votes)

committed

done

prepared to commit

step

Participant

2

4

(uncertain)
prepared to commit

committed

statusstepstatus

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 3 ©Pearson Education 2001 7

Figure 13.7 Operations in coordinator for nested transactions

openSubTransaction(trans) → subTrans
Opens a new subtransaction whose parent is trans and returns a unique
subtransaction identifier.

getStatus(trans)→ committed, aborted, provisional
Asks the coordinator to report on the status of the transaction trans. Returns values
representing one of the following: committed, aborted, provisional.

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 3 ©Pearson Education 2001 8

Figure 13.8 Transaction T decides whether to commit

1

2

T
11

T
12

T
22

T21

abort (at M)

provisional commit (at N)

provisional commit (at X)

aborted (at Y)

provisional commit (at N)

provisional commit (at P)

T

T

T

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 3 ©Pearson Education 2001 9

Figure 13.9 Information held by coordinators of nested transactions:

Coordinator
of transaction

Child
transactions

Participant Provisional
commit list

Abort list

T T1, T2 yes T1, T12 T11, T2

T1 T11, T12 yes T1, T12 T11

T2 T21, T22 no (aborted) T2

T11 no (aborted) T11

T12, T21 T12 but not T21 T21, T12

T22 no (parent aborted) T22

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 3 ©Pearson Education 2001 10

Figure 13.10 canCommit? for hierarchic two-phase commit protocol

canCommit?(trans, subTrans) → Yes / No
Call a coordinator to ask coordinator of child subtransaction whether it can commit
a subtransaction subTrans. The first argument trans is the transaction identifier of
top-level transaction. Participant replies with its vote Yes / No.

Figure 13.11 canCommit? for flat two-phase commit protocol

canCommit?(trans, abortList) → Yes / No
Call from coordinator to participant to ask whether it can commit a transaction.
Participant replies with its vote Yes / No.

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 3 ©Pearson Education 2001 11

Figure 13.12 Interleavings of transactions U, V and W

U V W

d.deposit(10) lock D

b.deposit(10) lock B

a.deposit(20) lock A at Y

at X

c.deposit(30) lock C

b.withdraw(30) wait at Y at Z

c.withdraw(20) wait at Z

a.withdraw(20) wait at X

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 3 ©Pearson Education 2001 12

Figure 13.13 Distributed deadlock

(a) (b)

D

Waits for

Waits
for

Held by

Held
by

B Waits for
Held

by

X

Y

Z

Held by

W

UV

AC

W

V

U

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 3 ©Pearson Education 2001 13

Figure 13.14 Local and global wait-for graphs

 local wait-for graph local wait-for graph global deadlock detector

X

T U

Y

V T T

U V

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 3 ©Pearson Education 2001 14

Figure 13.15 Probes transmitted to detect deadlock

V

Held by
W

Waits forHeld by

Waits
for

Waits for
Deadlock
detected

U

C
A

B

Initiation

W→ U → V → W

W→
 U

W
→

 U →
 V

Z

Y

X

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 3 ©Pearson Education 2001 15

Figure 13.16 Two probes initiated

(a) initial situation (b) detection initiated at object
requested by T

(c) detection initiated at object
requested by W

U

T

V

W

Waits for

Waits
for

V

W

U

T

T →

 U →

 W →

 V T →

 U

 →

 W

T → U Waits for

U

V

T

W

W →
 V

→ T
W →

 V →

 T →

 U

W →

 V Waits
for

Instructor’s Guide for

 Coulouris, Dollimore and Kindberg

Distributed Systems: Concepts and Design

 Edn. 3 ©Pearson Education 2001 16

Figure 13.17 Probes travel downhill

(a)

V

 stores probe when

U

 starts waiting (b) Probe is forwarded when

V

 starts waiting

U

W

Vprobe
queue U → V

Waits for
B

Waits for
B

Waits
for C

V→ W
U V probe

queue

V
U → V

U
→

 V U

→W

Instructor’s Guide for

 Coulouris, Dollimore and Kindberg

Distributed Systems: Concepts and Design

 Edn. 3 ©Pearson Education 2001 17

Figure 13.18 Types of entry in a recovery file

Type of entry Description of contents of entry

Object A value of an object.

Transaction status
Transaction identifier, transaction status (prepared, committed,
aborted) – and other status values used for the two-phase commit
protocol.

Intentions list
Transaction identifier and a sequence of intentions, each of which
consists of <identifier of object>, <position in recovery file of
value of object>.

Instructor’s Guide for

 Coulouris, Dollimore and Kindberg

Distributed Systems: Concepts and Design

 Edn. 3 ©Pearson Education 2001 18

Figure 13.19 Log for banking service

P0 P1 P2 P3 P4 P5 P6 P7

Object:A Object:B Object:C Object:A Object:B Trans:T Trans:T Object:C Object:B Trans:U

100 200 300 80 220 prepared committed 278 242 prepared

<A, P1> <C, P5>

<B, P2> <B, P6>

P0 P3 P4

Checkpoint End
of log

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 3 ©Pearson Education 2001 19

Figure 13.20 Shadow versions

Map at start Map when T commits

A → P0 A → P1

B → P0' B → P2

C → P0" C → P0"

P0 P0' P0" P1 P2 P3 P4

Version store 100 200 300 80 220 278 242

Checkpoint

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 3 ©Pearson Education 2001 20

Figure 13.21 Log with entries relating to two-phase commit protocol

Trans:T Coord’r:T • • Trans:T Trans:U • • Part’pant:U Trans:U Trans:U

prepared
part’pant
list: . . .

committed prepared Coord’r: . . . uncertain committed

intentions
list

intentions
list

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 3 ©Pearson Education 2001 21

Figure 13.22 Recovery of the two-phase commit protocol

Role Status Action of recovery manager

Coordinator prepared No decision had been reached before the server failed. It sends
abortTransaction to all the servers in the participant list and adds the transaction
status aborted in its recovery file. Same action for state aborted. If there is no
participant list, the participants will eventually timeout and abort the transaction.

Coordinator committed A decision to commit had been reached before the server failed. It sends
a doCommit to all the participants in its participant list (in case it had not
done so before) and resumes the two-phase protocol at step 4 (Fig 13.5).

Participant committed The participant sends a haveCommitted message to the coordinator (in
case this was not done before it failed). This will allow the coordinator to
discard information about this transaction at the next checkpoint.

Participant uncertain The participant failed before it knew the outcome of the transaction. It cannot
determine the status of the transaction until the coordinator informs it of the
decision. It will send a getDecision to the coordinator to determine the status of the
transaction. When it receives the reply it will commit or abort accordingly.

Participant prepared The participant has not yet voted and can abort the transaction.

Coordinator done No action is required.

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 3 ©Pearson Education 2001 22

Figure 13.23 Nested transactions

T
A1 A11 A12 A2

A1

T1 T11 T12 T2

A11
A11

A12
A12

A2

top of stack

T1

T2

T11

T12

